

ALANN ENGINEERING GROUP Consulting Engineers Since 1989

Stormwater Calculations

FLAGLER COUNTY, FL

PREPARED FOR:

SEMINOLE WOODS INVESTMENTS, LLC 7331 OFFICE PARK PLACE SUITE 200 VIERA, FL 32940

JUNE 16, 2023

REVISED FEBRUARY 28, 2024

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

FLAGLER LANDING - STORMWATER SUMMARY

PROJECT DESCRIPTION

The referenced project is the construction of the frontage on state road 100, that consists of 11 commercial outparcels measuring to approximately 14.87 ac. of developed area. The site is located to the northeast of the Flagler County Airport.

The site is currently undeveloped, densely wooded, with thick brush and wetlands. A little over 50% of the developed area will be within wetlands and those impacts amount to 9.31 acres. The site consists mainly of A/D soils as shown on the attached NRCS soil survey map. With the proximity of the water table to the surface, the soils will be modeled as D soils on this site.

Pre-Development

CN Number: Area in "D" Soils is 14.34 acres. CN = 77 (see attached TR55 Calculations) Time of Concentration Predevelopment Basin 1 – 0.841 Hours, 50.46 minutes (see attached TR55 Calculations)

Post Development

CN Number Pervious Area = 6.502 acres Impervious Area = 10.158 CN = 91 (see attached TR55 calculations) Time of Concentration Postdevelopment Basin 1 – 0.167 Hours (see attached TR55 Calculations)

The stormwater treatment for Post Basin 1 is provided in a wet detention pond. The site discharges to the adjacent wetland and is not OFW or impaired. Therefore, the treatment volume required is 1.87 ac-ft.

The treatment volume is provided from elevation 25.94 to 26.92 which is the invert elevation of the 2.5' wide weir. The normal water elevation is set at the seasonal high water table elevation of 25.94 and is maintained with an orifice pipe.

Pre/Post Discharge Comparison

Storm Event	Pre Discharge (cfs)	Post Discharge (cfs)
Mean Annual	11.82	5.90
25yr24hr	28.31	24.15
100yr24hr	36.82	34.46

WET DETENTION CALCULATIONS

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

BASIN #	1
TOTAL AREA: IMPERVIOUS AREA: PERVIOUS AREA: PERCENT IMPERVIOUS:	14.34 8.96 5.38 62%
RUNOFF COEFFICIENT:	0.64
NWL	25.94

<u>STAGE/STORAGE:</u>					CUMULATIVE	STORAGE
		STAGE (FT)	AREA (AC)	<u>STORAGE (AC-FT)</u>	<u>STOARGE (AC-FT)</u>	ABOVE ORIFICE
		16.00	1.06	0.00	0.00	
		23.94	1.50	10.16	10.16	
Ν	IWL	25.94	1.73	3.23	13.39	0.00
		27.00	1.85	1.90	15.29	1.90
		28.00	1.98	1.92	17.21	3.81
		29.00	2.10	2.04	19.25	5.85
		29.50	2.30	1.10	20.35	6.95

<u>REQ'D TREATMENT VOL.:</u>	Area x 1 inch of runoff OR 2.5" x impervious area, whichever is greater
	(add 50% to above number for OFW water quality standards)

	1.20	OR	1.87
VOLUME REQ'D.=	1.87		
	1.87		Site is not OFW or impaired

SET CONTROL ELEV.

ORIFICE INVERT:	25.94
WEIR ELEV:	26.92
TREATMENT VOL. DEPTH=	0.98

PERM. POOL VOLUME:

RUNOFF COEFF.= 2 WEEK RES. TIME:	0.64 21 days/153 days
MIN. PERM POOL VOL. =	Area x runoff coefficient x wet season rainfall of 30" x 3 week res. Time divided by 12"/
MIN. PERM POOL VOL =	3.14 AC-FT.
POND VOLUME BELOW ORIFICE INVERT =	13.39 AC-FT.

SIZE CONTROL STRUCTURE:

Note: volume to draw down is 2.72 ac-ft DETERMINE ORIFICE SIZE TO DRAWDOWN VOLUME IN 24 - 30 HOURS

A = Q / C(2gh) to 1/2 power

	h = (h1 + h2)/2		
h1 = h2 = C = g = Q = h =	0.98 0.49 0.60 32.20 treatment volume x 43560 sf/ac x 1/2 x 1/2 0.74	4 hrs x 1hr/3600 sec = 0	.47
A =	0.11 SQ. FT.		
DIA. OF ORIFICE =	SQ. RT. OF (4A/3.1416) = OR	0.38 FT. 4.57 INCHES	
MEAN DEPTH OF POND:	volume of pond at orifice inv. Divided by an	ea of pond at orifice invert	
VOLUME OF POND = AREA OF POND = MEAN DEPTH OF POND =	13.39 1.73 7.74		
LITTORAL ZONE ALTERNATE:			
IN LIEU OF LITTORAL ZONE PLA	NTINGS ADD 50% PERM. POOL VOLUME	Ξ:	

NORMAL PERM POOL VOL:	3.14
REQ'D VOLUME:	4.70
VOLUME PROVIDED:	13.39

PRE-DEVELOPMENT

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

PRE-DEVELOPMENT BASIN MAP

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

TR-55 CALCULATIONS

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

WinTR-55 Current Data Description

--- Identification Data ---

User:	Kim Buck		Date:	1/8/2024
Project:	FLAGLER LANDING		Units:	English
SubTitle:	PRE-DEVELOPMENT		Areal Units:	Acres
State:	Florida			
County:	FLAGLER EAST MSE5			
Filename:	P:\2213-1 Tidelands	$SR-100\Calcs\tr55\r$	newfile pre un	1known.w55

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
SITE			14.87	77 .	841

Total area: 14.87 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

1-Yr	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.81	3.42	4.44	5.33	6.68	7.87	9.2

Storm Data So	urce:	
Rainfall Dist	ribut	ion Type:
Dimensionless	Unit	Hydrograph:

User-provided custom storm data Type II <standard>

FLAGLER LANDING PRE-DEVELOPMENT FLAGLER EAST MSE5 County, Florida

Storm Data

Rainfall Depth by Rainfall Return Period

1-Yr	2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
2.81	3.42	4.44	5.33	6.68	7.87	9.2

Storm Data Source:	User-provided	custom	storm	data
Rainfall Distribution Type:	Type II			
Dimensionless Unit Hydrograph:	<standard></standard>			

Kim Buck

FLAGLER LANDING PRE-DEVELOPMENT FLAGLER EAST MSE5 County, Florida

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
SITE	14.87	0.841	77		

Total Area: 14.87 (ac)

FLAGLER LANDING PRE-DEVELOPMENT FLAGLER EAST MSE5 County, Florida

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
SITE							
SHEET	100	0.0097	0.800				0.805
SHALLOW	208	0.0097	0.050				0.036

Time of Concentration .841

Kim Buck

FLAGLER LANDING PRE-DEVELOPMENT FLAGLER EAST MSE5 County, Florida

Sub-Area Land Use and Curve Number Details

Sub-Area Identifier	Land Use		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
SITE	Woods	(good)	D	14.87	77
	Total Area / Weighted Curve Number			14.87	77
				=====	==

ICPR CALCULATIONS

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

<u>INPUT</u>

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

==== Basins =======			
Name: site Group: BASE		Node: site Type: SCS Unit Hydr	Status: Onsite rograph CN
Unit Hydrog Rainfall Rainfall Amount Area Curve Nu DCI	raph: Uh256 File: (in): 0.000 (ac): 14.870 mber: 77.00 A(%): 0.00	Peaking H Storm Duration Time of Conc Time Shift Max Allowable (<pre>Pactor: 256.0 a(hrs): 0.00 c(min): 50.46 c(hrs): 0.00 p(cfs): 999999.000</pre>
Nodes			
Name: Group: BASE Type: Stage/A	B	Base Flow(cfs): 0.000	Init Stage(ft): 0.000 Warn Stage(ft): 0.000
Stage(ft)	Area(ac)		
==== Hydrology Simu	 lations ======		
Name: 100y Filename: P:\2	r24hr 213-1 Tideland	ds SR-100\Calcs\icpr\100yr2	24hr.R32
Override Defa Storm Duration(Rainfall Rainfall Amount	ults: Yes hrs): 24.00 File: Flmod (in): 11.00		
Cime(hrs) Pri	nt Inc(min)		
5.0	0		
Name: 25yr Filename: P:\2	24hr 213-1 Tideland	ds SR-100\Calcs\icpr\25yr24	hr.R32
Override Defa Storm Duration(Rainfall Rainfall Amount	ults: Yes hrs): 24.00 File: Flmod (in): 9.00		
Time(hrs) Pri	nt Inc(min)		
30.000 5.0	0		
Name: mean Filename: P:\2	annual 213-1 Tideland	ds SR-100\Calcs\icpr\meanar	inual.R32
Override Defa Storm Duration(Rainfall Rainfall Amount	ults: Yes hrs): 24.00 File: Flmod (in): 5.00		
Time(hrs) Pri	nt Inc(min)		
30.000 5.0	0		

HYDROLOGY

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

Basin Name:	site
Group Name:	BASE
Simulation:	100yr24hr
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph:	Uh256
Peaking Fator:	256.0
Spec Time Inc (min):	6.73
Comp Time Inc (min):	5.00
Rainfall File:	Flmod
Rainfall Amount (in):	11.000
Storm Duration (hrs):	24.00
Status:	Onsite
Time of Conc (min):	50.46
Time Shift (hrs):	0.00
Area (ac):	14.870
Vol of Unit Hyd (in):	1.000
Curve Number:	77.000
DCIA (%):	0.000
Time Max (hrs):	12.50
Flow Max (cfs):	36.82
Runoff Volume (in):	8.072
Runoff Volume (ft3):	435730
Basin Name:	site
Group Name:	BASE
Simulation:	25yr24hr
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph:	Uh256
Peaking Fator:	256.0
Spec Time Inc (min):	6.73
Comp Time Inc (min):	5.00
Rainfall File:	Flmod
Rainfall Amount (in):	9.000
Storm Duration (hrs):	24.00
Status:	Onsite
Time of Conc (min):	50.46
Time Shift (hrs):	0.00
Area (ac):	14.870
Vol of Unit Hyd (in):	1.000
Curve Number:	77.000
DCIA (%):	0.000
Time Max (hrs):	12.50
Flow Max (cfs):	28.31
Runoff Volume (in):	6.192
Runoff Volume (ft3):	334210
Basin Name:	site
Group Name:	BASE
Simulation:	meanannual
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph: Peaking Fator: Spec Time Inc (min): Comp Time Inc (min): Rainfall File: Rainfall Amount (in): Storm Duration (hrs): Time of Conc (min): Time Shift (hrs): Area (ac): Vol of Unit Hyd (in): Curve Number: DCIA (%):	Uh256 256.0 6.73 5.00 Flmod 5.000 24.00 Onsite 50.46 0.00 14.870 1.000 77.000 0.000
Time Max (hrs):	12.58
Flow Max (cfs):	11.82
Runoff Volume (in):	2.620
Runoff Volume (ft3):	141416

POST-DEVELOPMENT

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

POST-DEVELOPMENT BASIN MAP

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

TR55 CALCULATIONS

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

WinTR-55 Current Data Description

--- Identification Data ---

User:	BUCK		Date:	9/11/2023
Project:	Flagler Airport 100		Units:	English
SubTitle:	Post-Development		Areal Units:	Acres
State:	Florida			
County:	FLAGLER WEST MSE5			
Filename:	P:\2213-1 Tidelands	SR-100\Calcs\tr55\p	ost_commercia	al.w55

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Site			14.87	92 (0.670

Total area: 14.87 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

| -Yr |
|------|------|------|------|------|------|------|
| (in) |
| .0 | .0 | .0 | .0 | .0 | .0 | .0 |

Storm Data Source:	Flagler County, 1	FL	(NRCS)	
Rainfall Distribution Type:				
Dimensionless Unit Hydrograph:	<standard></standard>			

Storm Data

Rainfall Depth by Rainfall Return Period

| -Yr |
|------|------|------|------|------|------|------|
| (in) |
| .0 | .0 | .0 | .0 | .0 | .0 | .0 |

Storm Data Source:	Flagler County, F	L (NRCS)
Rainfall Distribution Type:		
Dimensionless Unit Hydrograph:	<standard></standard>	

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
Site	14.87	0.670	92		

Total Area: 14.87 (ac)

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wett Perin (ft	ted meter Veloci t) (ft/se	Travel ty Time c) (hr)
Site User-provid	led						0.670
				Ti	me of	Concentration	0.670
							=======

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie	Land Use	Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Site	Open space; grass cover > 75% (good Paved parking lots, roofs, driveways) D D	5.12 9.75	80 98
	Total Area / Weighted Curve Number		14.87	92

ICPR CALCULATIONS

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

<u>INPUT</u>

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

	site			Node:	site	Status:	Onsite
Group:	BASE			Type:	SCS Unit H	ydrograph CN	
Unit Hy Rainf	/drograph: fall File:	Uh323			Peakin Storm Durat	g Factor: 323.0 ion(hrs): 0.00	
Rainfall Am	nount(in):	0.000			Time of C	onc(min): 10.00	
Curv	Area(ac):	14.870		M	Time Sh ax Allowabl	ift(hrs): 0.00 e 0(cfs): 999999.000	1
Curv	DCIA(%):	0.00		11		e g(eib). 55555.000	
Name: 99			Base F	low(cfs): 0.000	Init Stage(ft): 25.940
Group: BAS	BE me/Stage					Warn Stage(ft): 25.940
Type. IIn	ic, beage						
Time(hrs)	St	age(ft)					
0.00)	25.940					
24.00)	25.940					
Name: sit			Base F	Low(cfs): 0.000	Init Stage(ft): 25.940
Group: BAS Type: Sta	s≝ age/Area					Warn Stage(ft): 29.500
11							
Stage(ft)	A:	rea(ac)					
25.940)	1.7300					
27.000)	1.8500					
29.000 29.500))	2.1000 2.3000					
======================================							
Name:	orifice		From	n Node:	site	Length(ft):	30.00
Name: Group:	orifice BASE		From To	n Node: > Node:	site 99	Length(ft): Count: Friction Equation:	30.00 1 Automatic
Name: Group:	orifice BASE UPSTREAM	DC	From To DWNSTREA	n Node: 5 Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm:	30.00 1 Automatic Most Restrict
Name: Group: Geometry: Span(in):	orifice BASE UPSTREAM Circular 4.57	DC Ci 4.	From To DWNSTREA Lrcular .57	n Node: D Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef:	30.00 1 Automatic Most Restrict Both 0.00
Name: Group: Geometry: Span(in): Rise(in): Truert(ft):	orifice BASE UPSTREAM Circular 4.57 4.57 25.940	DC C = 4 . 4 .	From To DWNSTREA Lircular .57 .57	n Node: 5 Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N:	orifice BASE UPSTREAM Circular 4.57 4.57 25.940 0.010000	DC C= 4 2 5 0	From TC DWNSTREA ircular .57 .57 5.940 .010000	n Node: o Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef: Outlet Ctrl Spec:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: Op Clip(in): ot Clip(in):	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000	DC C 4 4 2 5 0 0 0	From To DWNSTREA ircular .57 .57 .57 .940 .010000 .000 .000	n Node: o Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): stream FHWA I	orifice BASE UPSTREAM Circular 4.57 4.57 25.940 0.010000 0.000 0.000 0.000	Do Ci 4, 4, 2; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	From To DWNSTREA ircular .57 .57 .940 .010000 .000 .000 .000	n Node: o Node: AM	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): stream FHWA I ccular Concre	orifice BASE UPSTREAM Circular 4.57 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Squar A Inlet Edge	DC 4 4 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	From To DWNSTREA ircular .57 .57 .5940 .010000 .000 .000 .000 .000 .000	n Node: o Node: AM wall	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: Op Clip(in): Ot Clip(in): Stream FHWA I rcular Concre	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Square A Inlet Edge	Descrip e edge v ge Descri	From To DWNSTREA ircular .57 .57 .5940 .010000 .000 .000 .000 .000 .000 .000	n Node: > Node: AM wall wall	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Exit Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Geometry: Span(in): Rise(in): Invert(ft): Manning's N: Op Clip(in): Ot Clip(in): stream FHWA I rcular Concre	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Square A Inlet Edge	Descrip e edge v ge Descri	From To DWNSTREA ircular .57 5.940 .010000 .000 .000 .000 .000 .000 .000	n Node: > Node: AM vall : vall	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): stream FHWA I rcular Concre wnstream FHWA ccular Concre	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Square A Inlet Edge	Descrip e edge v ge Descri	From To DWNSTREA ircular .57 5.940 .010000 .000 .000 .000 .000 .000 .000	n Node: > Node: AM vall : vall	site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): stream FHWA I rcular Concre wnstream FHWA rcular Concre	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Squard A Inlet Edge ete: Squard A Inlet Edge ete: Squard	Descrip e edge v ge Descri	From To DWNSTREA ircular 57 5.940 010000 000 000 000 000 000 000 000 00	n Node: > Node: AM vall : vall ==================================	site	Length(ft): Count: Friction Equation: Solution Algorithm: Flow Entrance Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Group: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): stream FHWA I rcular Concre wnstream FHWA rcular Concre == Weirs ==== Name: Group:	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 0.000 Unlet Edge ete: Square A Inlet Edge ete: Square A Inlet Edge ete: Square Weir BASE	Descrip e edge v ge Descr e edge v	From To DWNSTREA ircular .57 5.940 .010000 .000 .000 .000 .000 .000 .000	n Node: > Node: AM wall wall mall n Node: > Node:	site 99 site 99	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None
Name: Geometry: Span(in): Rise(in): Invert(ft): Manning's N: op Clip(in): ot Clip(in): ot Clip(in): stream FHWA I rcular Concre wnstream FHWA rcular Concre == Weirs ==== Name: Group: Flow: Turo:	orifice BASE UPSTREAM Circular 4.57 25.940 0.010000 0.000 Unlet Edge ete: Square A Inlet Edge ete: Square weir BASE Both Verticol.	Descrip e edge v ge Descri e edge v	From To DWNSTREA ircular 57 57 5.940 010000 000 000 000 000 000 000 000 00	<pre>n Node: > Node: AM vall ; vall n Node: > Node: Count: Count:</pre>	site 99 site 99 1 Trapercido	Length(ft): Count: Friction Equation: Solution Algorithm: Flow: Entrance Loss Coef: Bend Loss Coef: Outlet Ctrl Spec: Inlet Ctrl Spec: Stabilizer Option:	30.00 1 Automatic Most Restrict Both 0.00 1.00 0.00 Use dc or tw Use dc None

Control Struct C	Invert Elevation pening Dim	(ft): 26.92 (ft): 26.92 (ft): 9999.	0 0 0 0			
B	Sottom Clip Top Clip	(ft): 0.000 (ft): 0.000	TAB	LE		
Weir Orifice	Discharge Discharge	Coef: 3.200 Coef: 0.600				
==== Hydrology		ns =========				
Name: Filename:	100yr24hr P:\2213-1	Tidelands	SR-100\Calcs\i	cpr\100yr24hr.R32		
Override Storm Dura Rain Rainfall A	e Defaults: tion(hrs): fall File: mount(in):	Yes 24.00 Flmod 11.00				
Time(hrs)	Print In	c(min)				
30.000	5.00					
Name: Filename:	25yr24hr P:\2213-1	Tidelands	SR-100\Calcs\i	cpr\25yr24hr.R32		
Override Storm Dura Rain Rainfall A	e Defaults: tion(hrs): fall File: mount(in):	Yes 24.00 Flmod 9.00				
Time(hrs)	Print In	c(min)				
30.000	5.00					
Name: Filename:	meanannua P:\2213-1	l Tidelands	SR-100\Calcs\i	cpr\meanannual.R32	2	
Override Storm Dura Rain Rainfall A	e Defaults: tion(hrs): fall File: mount(in):	Yes 24.00 Flmod 5.00				
Time(hrs)	Print In	c(min)				
30.000	5.00					
===== Routing S	imulations					
Name: Filename:	100yr24hr P:\2213-1	Tidelands	Hydrology Sim: SR-100\Calcs\i	100yr24hr cpr\100yr24hr.I32		
Execute: Alternative:	Yes No	Restart:	No	Patch: No		
Max De	elta Z(ft):	1.00		Delta Z Factor: (.10000	
Time Step Start Min Calc Bounda	Optimizer: Time(hrs): Time(sec): Try Stages:	0.000 5.0000	Max	End Time(hrs): 2 Calc Time(sec): 1 Boundary Flows:	24.00 150.0000	
Time(hrs)	Print In	c(min)				
30.000	5.000					
Group	Run					
BASE	Yes					
Name: Filename:	25yr24hr P:\2213-1	Tidelands	Hydrology Sim: SR-100\Calcs\i	25yr24hr cpr\25yr24hr.T32		
Execute:	Yes	Restart:	No	Patch: No		

Alternative:	No			
Max De Time Step Start Min Calc Bounda	lta Z(ft): 1.00 Dptimizer: 0.000 Time(hrs): 0.000 Time(sec): 5.0000 ry Stages:	Max	Delta Z Factor: End Time(hrs): Calc Time(sec): Boundary Flows:	0.10000 24.00 150.0000
Time(hrs)	Print Inc(min)			
30.000	5.000			
Group	Run			
BASE	Yes			
Name:	meanannual	Hydrology Sim:	meanannual	
Filename:	P:\2213-1 Tidelands	SR-100\Calcs\i	cpr\meanannual.I	32
Execute: Alternative:	Yes Restart No	: No	Patch: No	
Max De	lta Z(ft): 1.00 Optimizer: 0.000		Delta Z Factor:	0.10000

Time Step Optimizer: 0.0	100	
Start Time(hrs): 0.0	00 End Time(hrs): 2	4.00
Min Calc Time(sec): 5.0	000 Max Calc Time(sec): 1	50.0000
Boundary Stages:	Boundary Flows:	

Time(hrs)	Print Inc(min)
30.000	5.000
Group	Run
BASE	Yes

HYDROLOGY

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

Basin Name:	site
Group Name:	BASE
Simulation:	100yr24hr
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph:	Uh323
Peaking Fator:	323.0
Spec Time Inc (min):	1.33
Comp Time Inc (min):	1.33
Rainfall File:	Flmod
Rainfall Amount (in):	11.000
Storm Duration (hrs):	24.00
Status:	Onsite
Time of Conc (min):	10.00
Time Shift (hrs):	0.00
Area (ac):	14.870
Vol of Unit Hyd (in):	1.001
Curve Number:	92.000
DCIA (%):	0.000
Time Max (hrs):	12.02
Flow Max (cfs):	105.16
Runoff Volume (in):	10.025
Runoff Volume (ft3):	541154
Basin Name:	site
Group Name:	BASE
Simulation:	25yr24hr
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph: Peaking Fator: Spec Time Inc (min): Comp Time Inc (min): Rainfall File: Rainfall Amount (in): Storm Duration (hrs): Status: Time of Conc (min): Time Shift (hrs): Area (ac): Vol of Unit Hyd (in): Curve Number: DCIA (%):	Uh323 323.0 1.33 Flmod 9.000 24.00 Onsite 10.00 0.00 14.870 1.001 92.000 0.000
Time Max (hrs):	12.02
Flow Max (cfs):	85.27
Runoff Volume (in):	8.038
Runoff Volume (ft3):	433872
Basin Name:	site
Group Name:	BASE
Simulation:	meanannual
Node Name:	site
Basin Type:	SCS Unit Hydrograph
Unit Hydrograph:	Uh323
Peaking Fator:	323.0
Spec Time Inc (min):	1.33
Comp Time Inc (min):	1.33
Rainfall File:	Flmod
Rainfall Amount (in):	5.000
Storm Duration (hrs):	24.00
Status:	Onsite
Time of Conc (min):	10.00
Time Shift (hrs):	0.00
Area (ac):	14.870
Vol of Unit Hyd (in):	1.001
Curve Number:	92.000
DCIA (%):	0.000
Time Max (hrs):	12.02
Flow Max (cfs):	45.03
Runoff Volume (in):	4.091
Runoff Volume (ft3):	220825

_

<u>OUTPUT</u>

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479
Name	Group	Simulation	Max Time Stage hrs	Max Stage ft	Warning M Stage ft	íax Delta Stage ft	Max Surf Area ft2	Max Time Inflow hrs	Max Inflow cfs	Max Time Outflow hrs	Max Outflow cfs	
99	BASE	100yr24hr	0.00	25.94	25.94	0.0000	0	12.49	34.46	0.00	0.00	
site	BASE	100yr24hr	12.49	29.24	29.50	0.0942	95717	12.01	103.00	12.49	34.46	
99	BASE	25yr24hr	0.00	25.94	25.94	0.0000	0	12.57	24.15	0.00	0.00	
site	BASE	25yr24hr	12.57	28.78	29.50	0.0972	90333	12.01	83.33	12.57	24.15	
99	BASE	meanannual	0.00	25.94	25.94	0.0000	0	12.94	5.90	0.00	0.00	
site	BASE	meanannual	12.94	27.65	29.50	0.0799	84270	12.03	43.65	12.94	5.90	

Name	Group	Simulation	Max Time Flow hrs	Max Flow cfs	Max Delta Q cfs	Max Time US Stage hrs	Max US Stage ft	Max Time DS Stage hrs	Max DS Stage ft	
orifice	BASE	100yr24hr	12.49	0.91	0.020	12.49	29.24	12.33	26.32	
weir	BASE	100yr24hr	12.49	33.55	1.663	12.49	29.24	0.00	25.94	
orifice	BASE	25yr24hr	12.57	0.84	0.023	12.57	28.78	12.36	26.32	
weir	BASE	25vr24hr	12.57	23.31	1.272	12.57	28.78	0.00	25.94	
orifice	BASE	meanannual	12.94	0.62	0.029	12.94	27.65	12.82	26.31	
weir	BASE	meanannual	12.94	5.28	0.457	12.94	27.65	0.00	25.94	

SOILS REPORT

880 Airport Rd. Suite 113 Ormond Beach, FL 32174 CA5479

T. 386-673-7640 www.ae-group.com

DRAFT REPORT OF GEOTECHNICAL EXPLORATION PALM COAST VILLAGE PALM COAST, FLORIDA LEGACY PROJECT NO. 22-1041.1

Prepared for:

Mr. Ken Atlee Atlee Development Group 7645 Gate Parkway Suite 202 Jacksonville, Florida 32256

Prepared by:

Legacy Engineering, Inc. 6415 Greenland Road Jacksonville, Florida 32258 Phone: 904.721.1100 www.legacyengineeringinc.com

April 8, 2022

April 8, 2022

Mr. Ken Atlee Atlee Development Group 7645 Gate Parkway Suite 202 Jacksonville, Florida 32256

Draft Report of Geotechnical Exploration and Engineering Services Palm Coast Village Palm Coast, Florida Legacy Project No. 22-1041.1

Dear Mr. Atlee:

As requested, Legacy Engineering, Inc. has completed a portion of geotechnical exploration for the subject project. The exploration was performed to evaluate the general subsurface conditions within the proposed construction areas, and to provide guidelines to facilitate foundation support, earthwork preparation, and paving design.

Due to site access conditions (soft surficial soils and standing water from recent rainfall), portions of the site were not accessible to our ATV-Skidder type drill rig. We will complete the remaining work with our tracked Marooka drill rig once schedule permits. We have prepared this draft report to present the results of the currently completed work and our preliminary recommendations.

We appreciate this opportunity to be of service as your geotechnical consultant on this phase of the project. If you have any questions, or if we may be of any further service, please contact us.

Sincerely: Legacy Engineering, Inc.

Isabella Trejo Geotechnical Specialist Jared Pitts, P.E. Licensed, Florida 92090

Table of Contents

1.0	PROJECT INFORMATION1	
1.1 1.2	SITE LOCATION AND DESCRIPTION	
2.0	FIELD EXPLORATION1	
3.0	LABORATORY TESTING	1
4.0	GENERAL SUBSURFACE CONDITIONS2	1
4.1 4.2	GENERAL SOIL PROFILE	, ,
5.0	BUILDING AREA RECOMMENDATIONS	;
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.3	GENERAL3BUILDING FOUNDATIONS3BEARING PRESSURE3FOUNDATION SIZE3BEARING DEPTH3BEARING MATERIAL4SETTLEMENT ESTIMATES4SITE PREPARATION FOR SHALLOW FOUNDATIONS5	
6.0	PAVEMENT RECOMMENDATIONS6)
6.1 6.2 6.3 6.4 6.4.1 6.4.2	GENERAL	
7.0	BORROW SUITABILITY9)
8.0	LIMITATIONS9)
APPE	INDIX AI	[
FIELD GENEI TEST E SUMM	EXPLORATION PLAN RALIZED SOIL PROFILES PORING RECORDS ARY OF LABORATORY INDEX TEST DATA	I I I
APPE	INDIX B	[
KEY TO FIELD	D SOIL CLASSIFICATION	I I

1.0 PROJECT INFORMATION

1.1 Site Location and Description

The site for the subject project is located on East Moody Boulevard, approximately 0.4 miles west of Seminole Woods Boulevard, in Palm Coast, Florida. The subject site is densely wooded with pine and oak trees, palmettos, and dense underbrush. Adjacent areas to the east, west, and south are occupied by commercial structures. Wetland areas are scattered throughout the site. At the time of our site visit, portions of the wetland areas were inundated with standing water from previous rainfall.

1.2 Project Description

Project information has been provided to us in discussions with you. We were provided with the following documents that show the layout of the proposed construction, property boundary limits, wetland areas, and topographic information:

- Preliminary Site Plan prepared by Baker Design Build
- Site Plan prepared by Sleiman Enterprises
- Wetland Delineation Map dated May 10, 2016, prepared by Carter Environmental Services, Inc.

Based on the information provided to us, we understand the proposed project will consist of constructing a commercial development at the subject site. The construction will consist of commercial structures, parking and drive areas, and a stormwater pond. We have assumed that the construction will include concrete-masonry-units (CMU), timber framing, or pre-engineered steel framing with exterior steel panels. We have not been provided with detailed foundation loading information; therefore, we have assumed the compressive wall, column, and floor loading will not exceed 4.0 klf, 75.0 kips, and 100 psf, respectively.

Proposed parking and drive areas will likely consist of flexible asphaltic pavement underlain by base course and stabilized subgrade soils. The proposed stormwater pond will be constructed within the southeast portion of the site. We have assumed fill heights for site development will generally not exceed 5 feet above existing grade.

2.0 FIELD EXPLORATION

In order to explore the subsurface conditions within the area of the proposed building areas, 11 Standard Penetration Test (SPT) borings (B1 through B4, B8, B9, B11, and B14 through B17) were performed to a depth of 25 feet each. Within the proposed pavement areas, four auger borings (A3, A4, A5, and A10) were conducted to depths of 3 to 3.5 feet below existing grade. The auger borings were terminated before the scheduled 6-foot exploration depths due to wet subsurface conditions causing the borehole to collapse. The borings were located using a handheld Global Positioning System (GPS) unit, and should be considered accurate to the degree implied by the method utilized. The SPT and auger borings were

conducted in accordance with ASTM D 1586 and ASTM D 1452, respectively. The subsurface conditions encountered at each boring location, and the recorded groundwater levels, are presented on the Generalized Soil Profiles and Test Boring Records in Appendix A.

3.0 LABORATORY TESTING

Soil samples recovered during the field exploration were visually classified in accordance with ASTM D 2488. Additional testing consisting of moisture content and organic content tests were performed to better define the classification of soils encountered and to provide engineering characteristics of the soils. The results of the testing are presented on the Test Boring Records and the Generalized Soil Profiles in Appendix A.

4.0 GENERAL SUBSURFACE CONDITIONS

4.1 General Soil Profile

The boring locations and general subsurface conditions that were encountered are graphically illustrated on the Field Exploration Plan and Generalized Soil Profiles. A relatively detailed description of the encountered subsurface conditions is presented on the Test Boring Records. When reviewing these records, it should be understood the soil conditions may change significantly between the boring locations. The following discussion summarizes the soil conditions encountered.

In general, the borings performed within the area of the proposed structures (B1 through B4, B8, B9, B11, and B14 through B17) encountered very loose to very firm fine sand (SP), fine sand with silt (SP-SM), and fine sand with clay (SP-SC) throughout the 25-foot exploration depths. As an exception, Boring B15 encountered a layer of silty fine sand with many organic materials within the upper 2 feet. Additionally, Borings B2, B9, B16, and B17 encountered layers of silty to very silty fine sand (SM) varying between the depths of 11 and 18.5 feet below existing grade. Topsoil was encountered within the upper 4 to 7 inches.

The auger borings performed within the proposed parking and drive areas (A3, A4, A5, and A10) encountered fine sand (SP) and fine sand with silt (SP-SM) extending to the boring termination depths of 3 to 3.5 feet.

4.2 Groundwater Level

The groundwater level was measured at the boring locations, subsequent to boring completion, at depths varying between the ground surface and 1 foot below existing grade. Based on the results of the soil borings, and review of available published literature, we estimate the seasonal high groundwater level at the groundwater levels measured during this exploration.

5.0 BUILDING AREA RECOMMENDATIONS

5.1 General

The following recommendations are made based upon a review of the attached soil test data, our understanding of the proposed construction, and experience with similar projects and subsurface conditions. If the structural loads, construction locations, or grading information change from those discussed previously, we request the opportunity to review and possibly amend our recommendations with respect to those changes.

Please report to us any conditions encountered during construction that were not observed during the performance of the borings. We will review, and provide additional evaluation as required.

A layer of silty fine sand with many organic materials was encountered at the locations of Boring B15 within the upper 2 feet. A significant portion of this soil type is composed of organic materials which will consolidate under loading information and will therefore result in excessive settlement to the overlying structure. This material should be overexcavated in its entirety from within the building limits.

5.2 Building Foundations

Based on the results of the subsurface exploration, we consider the subsurface conditions at the site favorable for support of the proposed car wash building and pay station when constructed on properly designed shallow foundation systems. Provided the soils are prepared in accordance with the Site Preparation Section of this report, the following parameters may be used for foundation design.

5.2.1 Bearing Pressure

The maximum allowable net soil bearing pressure for shallow foundations should not exceed 3,000 pounds per square foot (psf). Net bearing pressure is defined as the soil bearing pressure at the base of the foundation in excess of the natural overburden pressure. The foundations should be designed based upon the maximum load that could be imposed by all loading conditions.

5.2.2 Foundation Size

The minimum widths recommended for any isolated column footing and continuous wall footings are 24 inches and 18 inches, respectively. Even though the maximum allowable soil bearing pressure may not be achieved, these width recommendations should control the size of the foundations.

5.2.3 Bearing Depth

The exterior foundations should bear at a depth of at least 18 inches below the exterior final grades and the interior footings should bear at a depth of at least 18 inches below the finish

floor elevation to provide confinement to the bearing level soils. We recommend stormwater and surface water be diverted away from the building exteriors, both during and after construction, to reduce the possibility of erosion adjacent to the exterior footings.

5.2.4 Bearing Material

The foundations may bear on either the compacted suitable in-place natural soils or compacted structural fill. The bearing level soils, after compaction, should exhibit densities of at least 95 percent of the maximum dry density as determined by ASTM D 1557 (Modified Proctor), to the depth described subsequently in the Site Preparation section of the report. In addition to compaction, the bearing soils must exhibit stability and be free of "pumping" conditions.

5.2.5 Settlement Estimates

Post-construction settlement of the structure will be influenced by several interrelated factors, such as (1) subsurface stratification and strength/compressibility characteristics of the bearing soils; (2) footing size, bearing level, applied loads, and resulting bearing pressures beneath the foundations; (3) site preparation and earthwork construction techniques used by the contractor, and (4) external factors, including but not limited to vibration from offsite sources and groundwater fluctuations beyond those normally anticipated for the naturally-occurring site and soil conditions which are present.

Our settlement estimates for the structure are based upon the use of successful adherence to the site preparation recommendations presented later in this report. Any deviation from these recommendations could result in an increase in the estimated post-construction settlement of the structure.

Due to the sandy nature of the surficial soils, following the compaction operations, we expect a significant portion of settlement to be elastic in nature. This settlement is expected to occur relatively quickly, upon application of the loads, during and immediately following construction. Using the recommended maximum bearing pressure, the maximum structural loads presented in this report, and the field and laboratory test data which we have correlated to the strength and compressibility characteristics of the subsurface soils, we estimate the total settlements of the structure to be approximately one inch or less.

Differential settlement results from differences in applied bearing pressures and the variations in the compressibility characteristics of the subsurface soils. Based on the subsurface conditions as determined by the borings, it is anticipated that differential settlements will be within tolerable limits.

22-1041 (Draft)

5.3 Site Preparation for Shallow Foundations

We recommend the following site preparation guidelines for the building areas:

- 1. Implement temporary groundwater control measures, as required. The groundwater should be maintained at least two feet below the depth of excavation required and two feet below compacted surfaces. Temporary groundwater control measures should be the responsibility of the contractor.
- 2. Strip the proposed construction limits of all grass, roots, topsoil and other deleterious materials from within, and extending at least 5 feet beyond, the proposed building limits. Expect initial clearing and grubbing to depths of approximately 6 inches.

Over-excavate soil containing significant amounts of organic materials in its entirety, as encountered at the locations of Boring B15. Unsuitable soils should be over-excavated from within, and extending a horizontal distance of at least 5 feet beyond, the proposed building limits.

- 3. Proof-roll the building areas. The proof-rolling should be conducted with a fully-loaded tandem-axle dump truck. The truck should be driven back and forth over the subject area, with each wheel path overlapping the previous in order to provide full site coverage. This will help identify any areas where pumping/yielding soils are present. Any areas that exhibit pumping soils should be addressed by the geotechnical engineer to determine the most effective remedy. Methods typically used to remediate pumping soils are undercutting and replacement, moisture conditioning, etc.
- 4. Compact the exposed surface using a vibratory drum roller having a minimum static, atdrum weight of 7 tons and a drum diameter of at least 5 feet. It is recommended that repeated passes of the roller be made in one direction, followed by repeated passes of the roller in a direction perpendicular to the initial passes. The upper two feet of soils below the exposed surface (after stripping and grubbing) within the building areas should be improved to achieve a minimum compaction requirement of 95% of the Modified Proctor Test (ASTM D 1557). We recommend the soils, at the time of compaction, exhibit moisture contents within 2 percent of the optimum moisture content as determined by the Modified Proctor Test (ASTM D 1557).

The use of the vibratory mechanism on the roller should be used with caution when compacting the exposed surface and the initial lifts of fill in order to avoid drawing the groundwater to the surface and causing soil instability (pumping) conditions. If vibration is drawing water to the exposed surface, the vibratory mechanism should be turned off and the roller should be operated in static mode.

Should the soils experience pumping and soil strength loss during the compaction operations, compaction work should be immediately terminated and (1) the disturbed soils removed and backfilled with dry structural fill soils which are then compacted, or (2) the excess moisture content within the disturbed soils allowed to dissipate before recompacting.

- 5. Test the compacted surface for density at a minimum of one test per 5,000 square feet of building area.
- 6. Place structural fill in loose lifts not exceeding a thickness of 12 inches and compact until finished subgrade is achieved. Structural fill and backfill is typically defined as non-plastic, inorganic, granular soil having less than 10 percent material passing the No. 200 mesh sieve and containing less than 4 percent organic material. Typically, the material should exhibit moisture contents within 2 percent of the Modified Proctor optimum moisture content (ASTM D 1557) during the compaction operations. Compaction should continue until densities of at least 95 percent of the Modified Proctor maximum dry density (ASTM D 1557) have been achieved within each foot of the compacted structural fill.
- 7. Perform density tests within each lift of fill at a minimum of one test per 5,000 square feet of building area.
- 8. Excavate, compact and test footing excavations for density to a depth of one foot below bearing level. We recommend that you test one out of every four column footings and perform one test per every 100 linear feet of wall footing. Compaction operations in confined areas, such as footing excavations, can best be performed with a lightweight vibratory sled or other hand-held compaction equipment.

6.0 PAVEMENT RECOMMENDATIONS

6.1 General

We have assumed the subject project will utilize flexible asphaltic pavement underlain by base course and stabilized subgrade soils. In the following sections, we have presented our recommendations to guide pavement design and site preparation.

6.2 Pavement Section Recommendations

Our recommendations for pavement sections are presented below. Detailed traffic loading conditions were not available; therefore, we have provided pavement sections which can accommodate loading conditions typical of the subject construction over a design life of 20 years. The light duty pavement section is based on 500,000 Equivalent Single Axle Loads (ESALs) of 18 kips. The heavy duty pavement section is based on 1,500,000 ESALs. Frequent use of heavy trucks may warrant a stronger pavement section. Legacy

Engineering can provide a detailed pavement design if provided with the anticipated traffic loading.

Pavement Section	Asphalt ⁽¹⁾ Thickness (in)	Base Course ⁽²⁾ Thickness (in)	Stabilized ⁽³⁾ Subgrade (in)
Light Duty Asphalt	1.5	6.0	12
Heavy Duty Asphalt	2.0	8.0	12

1) Flexible pavement should consist of SP 9.5 or SP 12.5.

2) Base course should consist of limerock exhibiting an LBR of at least 100, or crushed concrete exhibiting an LBR of at least 130. Limerock and crushed concrete base course materials and gradations should conform to FDOT Standard Specifications for Road and Bridge Construction Sections 911 and 204, respectively.

3) Subgrade should exhibit an LBR of at least 40.

6.3 Site Preparation for Pavements

We recommend the following site preparation guidelines for pavement construction:

- 1. Implement temporary groundwater control measures, as required. The groundwater should be maintained at least two feet below the depth of excavation required and two feet below compacted surfaces. Temporary groundwater control measures should be the responsibility of the contractor.
- 2. Strip the proposed construction limits of all grass, roots, topsoil and other deleterious materials from within, and extending at least 3 feet beyond, the proposed pavement limits. Expect initial clearing and grubbing to average depths of approximately 6 inches
- 3. Compact the exposed surface with a vibratory drum roller until densities of at least 95 percent of the modified Proctor maximum dry density (ASTM D 1557) are achieved within the upper one foot below the exposed surface with the exception that densities of at least 98 percent should be obtained in the upper 12 inches below base course. We recommend the compacted soils exhibit moisture contents within 2 percent of the optimum moisture content as determined by the Modified Proctor Test (ASTM D 1557).

Should the soils experience pumping and soil strength loss during the compaction operations, compaction work should be immediately terminated and (1) the disturbed soils removed and backfilled with dry structural fill soils which are then compacted, or (2) the excess moisture content within the disturbed soils allowed to dissipate before recompacting.

Care should be exercised to avoid damaging any nearby structures while the compaction operation is underway. Prior to commencing compaction, occupants of adjacent structures should be notified and the existing conditions of the structures be documented with photographs and survey (if deemed necessary). Compaction should cease if deemed

detrimental to adjacent structures and Legacy Engineering, Inc. should be contacted immediately. It is recommended the vibratory roller remain a minimum of 75 feet from existing structures. Within this zone, use of a vibratory roller operating in the static mode is recommended.

- 4. Test the compacted surface for density at a frequency of not less than one test per 10,000 square feet of pavement area (minimum three locations).
- 5. Place structural fill in loose lifts not exceeding 12 inches and compact until finished subgrade is achieved. Structural fill and backfill is typically defined as non-plastic, inorganic, granular soil having less than 10 percent material passing the No. 200 mesh sieve and containing less than 4 percent organic material. Typically, the material should exhibit moisture contents within 2 percent of the Modified Proctor optimum moisture content (ASTM D 1557) during the compaction operations. Compaction should continue until densities of at least 95 percent of the Modified Proctor maximum dry density (ASTM D 1557) have been achieved within each foot of the compacted structural fill, with the exception that densities of at least 98 percent should be obtained in the upper 12 inches below base course.
- 6. Perform density tests within each lift of fill at a frequency of not less than one test per 10,000 square feet of pavement area (minimum of three locations).
- 7. Place and compact base course until densities of at least 100 percent of the modified Proctor maximum dry density are achieved. Compaction operations should be conducted with the drum roller noted above.
- 8. Perform density tests within the base course at a frequency of not less than one test per 10,000 square feet of pavement area (minimum of three locations).

6.4 Additional Pavement Considerations

6.4.1 Asphaltic Concrete Pavement

Asphaltic concrete mixes should be a current FDOT approved design of the materials actually used. Samples of the materials delivered to the project should be tested to verify that the aggregate gradation and asphalt content satisfies the mix design requirements.

After placement and field compaction, core the wearing surface to evaluate material thickness and to perform laboratory densities. Obtain cores at frequencies of at least one core per 3,000 square feet of placed pavement, or a minimum of two cores per day of production.

6.4.2 Groundwater Separation

Groundwater, if not maintained below the base course an adequate distance, can result in weakened subgrade and base course soils, and therefore a greatly reduced pavement life. It is recommended the seasonal high groundwater level be maintained at least 18 inches below limerock base courses and at least 12 inches below crushed concrete base courses. If the recommended vertical separation cannot be achieved with the proposed finished grades, underdrains can be considered to maintain the groundwater level at the recommended depths.

7.0 BORROW SUITABILITY

Although the borings in the pond area have not yet been performed, it could be anticipated that some suitable fill soils will be present due to the conditions at the remainder of the site.

The fine sand (SP), fine sand with silt (SP-SM), and fine sand with clay (SP-SC), as encountered at the borings, are suitable for use as structural fill and backfill material. The fine sand typically exhibits higher permeability than the fine sand with silt and fine sand with clay, and therefore, is more desirable for use in areas requiring substantial drainage potential. Because the fine sand with silt and fine sand with clay soils inherently retain moisture, strict moisture control will be required to avoid soil instability (pumping) during placement and compaction operations.

Density requirements typical of structural soils are very difficult to achieve with silty and clayey fine sand (SM and SC) due to their extreme nature to retain moisture. Therefore, we do not recommend clayey fine sand (SC) and silty fine sand (SM) for use as structural fill materials.

The soils in the proposed pond area that are below the groundwater level will have moisture contents in excess of the Modified Proctor optimum moisture content and will require stockpiling or spreading to bring the moisture content to within 2 percent of the optimum moisture content corresponding to the required degree of compaction.

8.0 LIMITATIONS

We have conducted the geotechnical engineering in accordance with principles and practices normally accepted in the geotechnical engineering profession. Our analysis and recommendations are dependent on the information provided to us. Legacy Engineering, Inc. is not responsible for independent conclusions or interpretations based on the information presented in this report.

22-1041 (Draft)

Palm Coast Village

APPENDIX A

FIELD EXPLORATION PLAN GENERALIZED SOIL PROFILES TEST BORING RECORDS SUMMARY OF LABORATORY INDEX TEST DATA

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B1 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/22/2022 **Boring Location** See Field Exploration Plan Boring Completed 03/22/2022 N/A 0.5 feet DK **Ground Elevation** N/A Datum **Groundwater Depth** Driller Length of Casing Set 5 feet Engineer Jared Pitts **Casing Size** 4 inches STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 Topsoil (6 inches) 1 Very Loose to Loose Brown and Light Brown 1 2 1 1 Mottled Fine SAND with Silt and Trace Roots (SP-SM) 1 2 3 Loose to Very Firm Light Brown Fine SAND (SP) 3 2 3 9 6 5 4 4 1111 Very Firm to Firm Brown Fine SAND with 11 1177 5 ោះស 3 23 Silt (SP-SM) 12 12 6 3 Firm Gray Fine SAND with Silt (SP-SM) 8 C 1 1 1 1 7 4 19 11 12 8 Firm Gray Brown Fine SAND (SP) 10 9 5 20 9 11 10 11 12 Very Loose Gray Fine SAND with Silt and Trace Shell Fragments (SP-SM) 13 1 14 6 1-12" 1-12" 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

LEGACY

TEST BORING RECORD

JOB NO. 22-1041

ENGINEERING, INC.

Geote	chnical & Mate	erials Engineering and Testing			BORING	NO	B1
Project		Palm Coast Village		_	Sheet	2	of2
			F	щ	STAN	DARD PENET	RATION TEST
ELEV. (FT)	DEPTH (FT)	MATERIAL DESCRIPTION	SYMBC	SAMPL	BLOW	S / 6-INCH	BLOW COUNT
	- 16	Very Loose Gray Fine SAND with Silt and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		\vdash		
		Trace Shell Fragments (SP-SM), Continued	1 1 4 4 1 1 1 1 6 4 4 4 1 1				
	_ 17 _	3	011111		L		
	17	Very Firm to Loose Gray Fine SAND (SP)					
	- 18 -				-		
						7	
	— 19 —				-		
				7		12	23
	20 -					11	
	<u>21</u>						
	- 22				-		
	- 23				-		
	24				_	4	
				8		5	9
	- 25					4	
	25	Boring Terminated at 25 Feet					
	26 —				-		
	- 27				\vdash		
	- 28				-		
	┣ ┥						
	- 29				F		
	30				L		

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B2 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/22/2022 See Field Exploration Plan Boring Completed 03/22/2022 **Boring Location Ground Elevation** N/A N/A 0 feet (Ground Surface) DK Datum **Groundwater Depth** Driller Length of Casing Set 5 feet **Casing Size** 4 inches Engineer Jared Pitts STANDARD PENETRATION TEST SAMPLE NO. SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 · · · · 1 Topsoil (4 inches) 619 Very Loose to Loose Brown Fine SAND with Silt 1 C 1 1 J 1 3 and Trace Roots (SP-SM) t i i i i 2 3 1107 2 1111 3 Loose Brown Fine SAND with Silt (SP-SM) 5 2 10 3 5 4 4 Firm Gray Brown Fine SAND with Clay (SP-SC) 5 7 5 3 16 9 9 6 7 Firm Light Gray Brown Fine SAND (SP) 9 7 4 18 9 9 8 7 5 14 9 10 11 Very Loose Gray Silty Fine SAND with 12 Few Shell Fragments (SM) 13 14 6 2 1 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

Ground Water Table BLOW COUNT IS THE NUMBER OF BLOWS OF 140 LB. HAMMER FALLING 30 IN. REQUIRED TO DRIVE 1.4 IN. I.D. SAMPLER 1 FT.

LEGACY

TEST BORING RECORD

JOB NO. 22-1041

ENGINEERING, INC.

Geotec	hnical & Mat	terials Engineering and Testing			BORING	NO	B2
Project _		Palm Coast Village			Sheet	2	of2
			Ъ	щ	STANE	DARD PENET	RATION TEST
ELEV. (FT)	DEPTH (FT)	MATERIAL DESCRIPTION	SOIL SOIL	ON SAMPL	BLOW	S / 6-INCH	BLOW COUNT
	- 16 -	Very Loose Gray Silty Fine SAND with			-		
		Few Shell Fragments (SM), Continued					
	17	· · · · · · · · · · · · · · · · · · ·			L		
	17						
	- 18 -				\vdash		
	┝ ╡						
	_ 10 _	Firm Gray Fine SAND (SP)				5	
	19			7		8	17
						9	
	- 20 -				┢		
	_ 21 _						
	21						
	- 22				\vdash		
	_ 22 _				L		
	25						
		Loose Grav Fine SAND with Silt (SP-SM)				2	
	- 24		(())))))))))))))))))))))))))))))))))))		 -	·	F
				8		3	5
	- 25				L.	2	
	20	Boring Terminated at 25 Feet					
	- 26 -				F		
	_ 27 _				L		
	- 28 -				F		
	- 29				L		
	- 30 -				F		
	<u> </u>				L		

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B3 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/22/2022 See Field Exploration Plan Boring Completed 03/22/2022 **Boring Location** N/A N/A 0.7 feet DK **Ground Elevation** Datum **Groundwater Depth** Driller Length of Casing Set 5 feet Engineer Jared Pitts **Casing Size** 4 inches STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 ~ ~ ~ . Topsoil (4 inches) 1 Very Loose Brown Fine SAND with Silt and 2 Trace Roots (SP-SM) 1 1 1 1 3 1 1 2 2 2 Very Loose to Firm Gray Brown Fine SAND with 1111 1 2 3 3 Silt (SP-SM) 2 **** 4 4 5 8 5 3 18 10 10 6 5 7 4 15 7 Firm to Very Firm Gray Fine SAND with Silt (SP-SM) 8 8 8 Very Firm Light Gray Brown Fine SAND (SP) 6 9 9 5 22 13 10 11 Very Loose Gray Fine SAND with Silt (SP-SM) 12 13 14 6 2 1 1111 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

$L \mathrel{E} G \mathrel{A} \mathrel{C} Y$

TEST BORING RECORD Jo

JOB NO. 22-1041

BORING NO.

B3

ENGINEERING, INC.

Project		Palm Coast Village		_ :	She	et	2	of	2
			ы С	Щ		STAND	ARD PENE	TRA	TION TEST
(FT)	(FT)	MATERIAL DESCRIPTION	SVMB	SAMP NO	E	BLOWS	/ 6-INCH		BLOW COUNT
	- 16 -	Very Loose Gray Fine SAND with Silt	1.0.1.1.1		-		-	-	
		(SP-SM). Continued							
	17	Firm Grav Fine SAND (SP)			L		_		
	- 18				\vdash		_	_	
	L _								
						6	6		
	<u> </u> 19 —			7	F	7	, –		16
									10
	<u> </u>				L	Ĺ			
	F -								
	- 21 -				\vdash		_	-	
	L -								
	22 -						_		
	- 23				L		_	_	
	Γ –	Loose Gray Fine SAND with Silt (SP-SM)				2	2		
	- 24			Q	F	2	, –		Б
				0		-	-		5
	25 -				L	3			
		Boring Terminated at 25 Feet							
	F -								
	<u> </u>				F		_	-	
	_ 27 _						_		
	28 -				F		_	-	
	<u> </u>								
							_		
	29								
	- 30				╞		_		
	<u> </u>								

TEST BORING RECORD JOB NO. 22-1041

ENC	JINEERI	NG, INC.						BORING NO	·	B4
Geoteo	chnical & Mate	erials Engineering a	and Testing					Sheet	1	of
Project			Palm	Coast Village			_	Boring Begu	ın	03/22/2022
Boring L	ocation		See	Field Exploratio	n Plan		_	Boring Com	pleted	03/22/2022
Ground I	Elevation	N/A Datum	N/A	Groundwater	Depth1.0	feet	_	Driller		DK
Length o	of Casing Set	t 5 feet	Casing Size		4 inches		_	Engineer	Ja	red Pitts
						L L	щ	STANDARI	D PENET	RATION TEST
ELEV. (FT)	DEPTH (FT)		MATE	RIAL DESCRIPTIO	N	SOIL	SAMPL NO.	BLOWS / 6	-INCH	BLOW COUNT
	0		Tops	soil (4 inche	s)	11111		1		
	+ $+$	Verv I	oose Ligh	t Brown Fin	e SAND (SP)					
		() () ()					1			2
								1		
								2		
	<u> </u>							-	_	-
								1		
								2		
	3 -	VervLoos	e to Firm (Grav Brown	Fine SAND (SE)) ·····	2	2		4
						/		-		
								2		
								2		
	+ +	Firm	Light Croy	Prown Find						
	<u> </u>	ГШШ	Light Gray	DIOWITFILIE	SAND (SP)		3	4	_	13
							Ŭ	9		
								13		
	6	F :								-
		FI	m Light Br	own Fine S	AND (SP)			8		
								7		
	- 7						4	7		14
								9		
	0	Firm	Light Gray	Brown Fine	e SAND (SP)			6		
								Q		
	9 —						5	L °		17
								9		
	10 -						F	F		-
										-
	- 12							L	_	-
		Very L	oose to Ve	ery Firm Gra	ay Fine SAND	1-1-1-1-1				
			with	Silt (SP-SM	1)	1-6-1-6-6-6 1-6-1-6-6-6				
	- 13 -					1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,		┝		-
						1-1-1-1-1-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1				
						र्ष संस्थित संस्थित इ. इ. इ. इ. इ. इ. इ. इ.		1		
	<u> </u> − 14 −					<u> </u>	6			2
	$\left - \right $					11111	Ŭ	'		<u> </u>
	45					0.0000000000000000000000000000000000000		1		
						1.619010 01110.00	Γ	[
	\vdash \dashv					1001000				
REMAR	KS:				BORING & S	AMPLING: AST	/ D1	I 586/CORE DRII	LING: A	STM D2113
										-

$L \mathrel{E} G \mathrel{A} \mathrel{C} Y$

TEST BORING RECORD J

JOB NO. 22-1041

BORING NO.

B4

ENGINEERING, INC.

Project		Palm Coast Village		_ {	Sheet	2	_ 0	f
ELEV. (FT)	DEPTH (FT)		SYMBOL	SAMPLE NO.	ST. BLC	ANDARD PEN OWS / 6-INCH		ATION TEST BLOW COUNT
Project	DEPTH (FT) - 16 - 17 - 17 - 18 19 - 20 - 21 - 22 - 22 - 22 - 23 - 23 - 24 - 24 - 25 - 26 - 26	Palm Coast Village MATERIAL DESCRIPTION Very Loose to Very Firm Gray Fine SAND with Silt (SP-SM), Continued Boring Terminated at 25 Feet		2 SAMPLE - SAMPLE - NO.	Sheet ST. BLC 	2 ANDARD PEN DWS / 6-INCH 8 12 13 13		f 2 ATION TEST BLOW COUNT 25 7
	27 28				_			
	29 _ 30				_			
	- 31 -				_			

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B8 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/23/2022 See Field Exploration Plan Boring Completed 03/23/2022 **Boring Location** N/A 1 foot (Estimated) DK **Ground Elevation** N/A Datum **Groundwater Depth** Driller Length of Casing Set 5 feet 4 inches Engineer Jared Pitts **Casing Size** STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 Topsoil (6 inches) 1 1111 Loose Light Brown Fine SAND with Silt (SP-SM) 2 5 1 1 3 5 2 Loose Light Brown and Dark Gray Brown Mottled 6 Fine SAND with Silt (SP-SM) 4 2 3 7 1111 3 111 LI LI 6 4 1111 Firm Gray Fine SAND with Silt (SP-SM) 8 1.1.1.1.1.1 ោះរោ 8 5 3 16 8 9 6 6 7 7 4 14 Firm Gray Brown Fine SAND with Silt (SP-SM) 7 5 8 6 6 9 5 13 7 11 10 11 Very Loose Gray Fine SAND with Silt (SP-SM) 12 13 14 6 3 1 2 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

$L \mathrel{E} G \mathrel{A} \mathrel{C} Y$

TEST BORING RECORD

JOB NO. 22-1041

B8

BORING NO.

ENGINEERING, INC.

ELEV. (FT)	DEPTH (FT) MATERIAL DESCRIPTION	SOIL	MPLE NO.	STAN	NDARD PENET	RATION TEST
		0	SA L	BLOV	VS / 6-INCH	BLOW COUNT
	Very Loose Gray Fine SAND with Silt (SP-SM), Continued (SP-SM),	00 Ur 0 0 11 1 1 0 0 11<	7 8	BLOV	VS / 6-INCH	BLOW COUNT 3
	— 28 — — — 29 —			_	_	
				_	_	

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B9 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/23/2022 See Field Exploration Plan Boring Completed 03/23/2022 **Boring Location** N/A N/A 0.5 feet DK **Ground Elevation** Datum **Groundwater Depth** Driller Length of Casing Set 5 feet 4 inches Engineer Jared Pitts **Casing Size** STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 Topsoil (6 inches) 1 1111 Very Loose Dark Brown Fine SAND with Silt and 1 113 1111 2 1 Trace Organic Materials (SP-SM) ti i i (A 3) 2 Firm Light Brown Fine SAND with Silt (SP-SM) 3 ----5 2 3 12 7 8 4 7 1111 8 5 3 20 111 Firm Gray Fine SAND with Silt (SP-SM) 12 111 10 6 6 9 7 4 19 10 7 8 7 7 5 13 9 Firm Gray Brown Fine SAND with Silt (SP-SM) 6 -1-4-1-- 10 11 Very Loose Dark Gray Very Silty Fine SAND (SM) 12 13 2 14 6 2 1 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

LEGACY

TEST BORING RECORD

JOB NO. 22-1041

ENGINEERING, INC.

Geotec	hnical & Mat	erials Engineering and Testing			BORING	NO	B9
Project _		Palm Coast Village			Sheet	2	of2
			Ъ Г	щ	STAN	DARD PENET	RATION TEST
ELEV. (FT)	DEPTH (FT)	MATERIAL DESCRIPTION	SYMBC	SAMPL NO.	BLOW	S / 6-INCH	BLOW COUNT
	- 16 -	Very Loose Dark Gray Very Silty Fine SAND			-		
		(SM). Continued					
	17						
	17						
	- 18 -				-		
		Loose Grav Fine SAND with Silt (SP-SM)				4	
	— 19 —	Loose Gray I me GAND with Ont (OF -OM)			—		
				7		4	8
			1.619619 1.1111			4	
			1111111		F		
	<u> </u>				L		
			10010100 (111100				
			i na sua Trajana				
	- 22 -		n i i i i i i i i I i i i i i i i i i i i		—		
			1.1.1.1.1.1				
	<u> </u>						
						3	
	- 24			8		4	7
			1.4.1.1.1.1	Ŭ		0	•
	- 25 -				-	3	
		Boring Terminated at 25 Feet					
	<u> </u>				-		
	— 27 —				L		
	- 28 -				-		
	┝ ┥						
	<u> </u>				L		
	<u>→</u> 30 →				F		
	┝ ┤						
	- 31 -				F		

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B11 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/23/2022 **Boring Location** See Field Exploration Plan Boring Completed 03/23/2022 **Ground Elevation** N/A N/A 0.5 feet DK Datum **Groundwater Depth** Driller Length of Casing Set 5 feet **Casing Size** 4 inches Engineer Jared Pitts STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 Topsoil (6 inches) 1-12" ប់រាវ Very Loose Light Brown Fine SAND with Silt and i di bitu 1 1-12" Trace Roots (SP-SM) 1 2 2 Loose to Very Firm Light Brown Fine SAND with 4 Silt and Trace Shell Fragments (SP-SM) 4 2 3 9 5 7 4 4 Very Firm to Firm Light Gray Fine SAND (SP) 10 5 3 22 12 13 6 6 7 7 4 15 8 6 8 8 8 5 14 9 6 10 11 Very Loose to Loose Gray Fine SAND with 12 Silt (SP-SM) 13 111 14 6 2 1 1111 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

$L \mathrel{E} G \mathrel{A} \mathrel{C} Y$

TEST BORING RECORD Jc

JOB NO. 22-1041

B11

BORING NO.

ENGINEERING, INC.

Project		Palm Coast Village			SI	neet	2		of
			Б	щ	Γ	STA	NDARD I	PENET	RATION TEST
ELEV. (FT)	DEPTH (FT)	MATERIAL DESCRIPTION	SYMBC	SAMPL	Š	BLO	WS / 6-IN	ICH	BLOW COUNT
	- 16 -	Very Loose to Loose Gray Fine SAND with	1.633.03		F	-			
		Silt (SP-SM), Continued							
	17		1003000	1		-			
			1.01.01						
			1.0.1.0						
	- 18 -				┢	-			
	<u> </u>					_	3		
	10		1.1.1	7			2		3
			1-1-1-1-1-				1		
	- 20 -		F 69 3 13		╈	-			
	_ 21 _		C (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_			
			01111. 1114 - 111						
	- 22		1.01900		┢	-			
			1.63900						
	<u> </u>					-			
			1 63 9 0 1						
							4		
	- 24		1.1.1.1.1.1.1	8		-	3		6
							3		-
	- 25 -		1.63		+	-	5		
		Boring Terminated at 25 Feet							
	00								
	_ 26 _				Γ	-			
	- 27 -				┢	-			
	28					_			
	20								
	- 29 -				┢	-			
						-			
	<u> </u>				┢	-			
L	I		-		_				I

TEST BORING RECORD JOB NO. 22-1041

BORING NO. B14 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/23/2022 See Field Exploration Plan Boring Completed 03/23/2022 **Boring Location** N/A 0.3 feet **Ground Elevation** N/A Datum **Groundwater Depth** Driller DK Length of Casing Set 5 feet Engineer Jared Pitts **Casing Size** 4 inches STANDARD PENETRATION TEST SAMPLE NO. SYMBOL SYMBOL ELEV. DEPTH MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 Topsoil (5 inches) ... 2 Very Loose to Loose Gray and Dark Brown Silty Fine 1111 1 SAND with Some Organic Materials and 1 4 1 11 3 **Trace Roots** 2 2 Moisture Content = 40.1%2 Organic Content = 4.7%2 Loose to Firm Gray Brown Fine SAND with Silt 2 3 5 3 and Trace Roots (SP-SM) - -3 Δ 5 Firm Light Gray Brown Fine SAND (SP) 8 5 3 18 10 11 6 7 7 7 4 14 (2.1.1 Firm Gray Fine SAND with Silt (SP-SM) 1.69.61 7 5 8 Loose Gray Brown Fine SAND with Silt (SP-SM) 5 5 9 5 10 5 6399 10 11 Very Loose to Firm Gray Fine SAND with 12 Silt (SP-SM) 13 2 14 6 2 3 1.1.1 15 REMARKS: BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

Ground Water Table BLOW COUNT IS THE NUMBER OF BLOWS OF 140 LB. HAMMER FALLING 30 IN. REQUIRED TO DRIVE 1.4 IN. I.D. SAMPLER 1 FT.

$L \mathrel{E} G \mathrel{A} \mathrel{C} Y$

TEST BORING RECORD Jo

JOB NO. 22-1041

B14

BORING NO.

ENGINEERING, INC.

ELEV. (P) DEPTH (P) MATERIAL DESCRIPTION g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g	Project		Palm Coast Village		_ 5	Shee	t2		of2
ELEY DEPTH (r) MATERIAL DESCRIPTION Image: sector formed by the count of t				Ъ	щ	S	FANDARD PE	NETF	RATION TEST
16 Very Loose to Firm Gray Fine SAND with Silt (SP-SM), Continued 17 10 17 10 10 10 18 10 10 10 20 10 10 10 20 10 10 10 20 10 10 10 20 10 10 10 20 10 10 10 21 10 10 10 22 10 10 10 23 10 10 10 24 10 10 10 25 Boring Terminated at 25 Feet 12 28 10 12 12 28 10 10 10 29 10 10 10 28 10 10 10 29 10 10 10 30 10 10 10 10 10 10 10 10 10 10 10 10 10	ELEV. (FT)	DEPTH (FT)	MATERIAL DESCRIPTION	SYMBC	SAMPL NO.	BL	OWS / 6-INC	Н	BLOW COUNT
Silt (SP-SM), Continued 10 17 4 18 5 19 5 20 5 21 5 22 6 23 6 24 6 25 Boring Terminated at 25 Feet 26 12 27 12 28 12 30 1 31 1		- 16 -	Very Loose to Firm Gray Fine SAND with	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_		_	
$ \begin{array}{c} 17 \\ 18 \\ 19 \\ 19 \\ 20 \\ 20 \\ 21 \\ 22 \\ 22 \\ 22 \\ 23 \\ 24 \\ 24 \\ 25 \\ Boring Terminated at 25 Feet \\ 26 \\ 27 \\ 28 \\ 29 \\ 29 \\ 31 \\ 31 \\ 0 \\ 10 \\ 7 \\ 7 \\ 7 \\ 7 \\ 10 \\ 7 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 7 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$			Silt (SP-SM), Continued	10010100 16 04 4 4 4					
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$		17							
18 -				1.01.01					
18 4 10 19 4 5 10 20 5 10 21 5 10 22 10 5 10 23 10 5 10 24 10 10 10 25 Boring Terminated at 25 Feet 10 12 26 12 12 12 28 10 12 12 30 10 12 12				(()))))))) ())))))					
19 - 4 - 10 20 - 5 - 10 - - - 5 - 10 - - - - - - - - 10 -		- 18 -				_		_	
- 19 - 4 - 10 - 20 - 5 - 10 - 21 - - - - - - 22 - - - - - - - 23 - - - - - - - - 24 - - - - - - - - - 25 Boring Terminated at 25 Feet - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
10 10 20 5 10 21 5 10 22 1 5 10 23 10 10 10 24 10 10 10 25 Boring Terminated at 25 Feet 10 10 26 12 12 12 27 10 12 12 28 10 12 12 29 10 10 12 30 10 10 10 31 10 10 10		19		1 - F - T - F - F - F - F - F - F - F - F		L	4		
- - - 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		15			7		5		10
20				1-1-1-1-1-			5		
- -		- 20 -			_	<u> </u>		_	
- 21 - - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$\begin{bmatrix} 2 & - & - & - & - & - & - & - & - & - &$		21				_			
$\begin{bmatrix} 22 \\ 23 \\ 23 \\ 24 \\ 24 \\ 25 \\ 26 \\ 26 \\ 26 \\ 27 \\ 27 \\ 27 \\ 30 \\ 30 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31$		21							
22 1 1 -									
23 - - - - - - - - - - - - - - - - - - 12 24 - - - - - - - - - - - 12 25 Boring Terminated at 25 Feet -		- 22		1.699669		_		_	
- 23 -				10000					
- -		- 23 -		(1931))) 1.032000				_	
-24 - 6 - 12 -25 Boring Terminated at 25 Feet - - - - -26 - - - - - - -27 - - - - - - - -28 - <				1 (10.00) 1 (10.00)					
- - - - - - - 12 -							6		
- -		- 24		6,63,3-9-9	8	-	6		12
- 25 Boring Terminated at 25 Feet - - 26 - - - 27 - - - 28 - - - 30 - - - 31 - -					Ŭ		C		
Boring Terminated at 25 Feet		- 25 -		1.0350	_		0		
		L _	Boring Terminated at 25 Feet						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{bmatrix} - & -1 \\ - & 27 \\ - & -1 \\ - & 28 \\ - & -28 \\ - & -1$		_ 26 _							
$ \begin{array}{c} -27 \\ -28 \\ -28 \\ -29 \\ -30 \\ -31 \\ -31 \\ -31 \\ -37 $									
		- 27 -				_		_	
		28							
		20							
		- 29 -				-		_	
		<u> </u>				L			
		<u> </u>				-			
Geotechnical & M									
----------------------------	--	---	-----	----------------------------	---------------				
	S	heet 1	of						
Project	Palm Coast Village		В	oring Begun	03/23/2022				
Boring Location	See Field Exploration Plan		В	Soring Completed	d 03/23/2022				
Ground Elevation	N/A Datum N/A Groundwater Depth 1.0 feet		D	Priller	DK				
Length of Casing S	tet5 feet Casing Size 4 inches		E	ingineer	lared Pitts				
			u	STANDARD PEN	ETRATION TEST				
ELEV. DEPTH (FT) (FT)	MATERIAL DESCRIPTION	SYMBC	NO.	BLOWS / 6-INCH	BLOW COUNT				
0	Topsoil (7 inches)	/ · · · · · · · · · · · · · · · · · · ·		1					
- 1 -	Very Loose Dark Brown Silty Fine SAND with Many Organic Materials and Trace Roots		1 -	- 1 - 2 -	- 3				
- 2 -	Moisture Content = 40.9% Organic Content = 9.0%				_				
- 3 -			2	3 3	6				
5 — 5 —	Firm Gray Brown Fine SAND (SP)		3 -	2 5 12	- 17				
- 6 - - 7 -	Firm Light Gray Brown Fine SAND (SP)	· · · · · · · · · · · · · · · · · · ·	4 -	- 9 9 - 9 7	 16				
- 8 - - 9 -			5 -	- 7 - 7 - 9 - 9 -	- 18				
- 10 - - 11 -					-				
- 12 - - 13 - - 13 -	Very Loose to Firm Gray Fine SAND with Silt (SP-SM)	4 00 0010 1/00 0720 0 0 000 0 0 000 1/00 000 1/00 0720 0 0 000 1/00 0720 1/00 0000000000000000000000000000000000	-	 	_				
- 14 - - 15 -			6	1 1 	3				

TEST BORING RECORD J

JOB NO. 22-1041

B15

BORING NO.

ENGINEERING, INC.

Geotechnical & Materials Engineering and Testing

ELEC. DEPTH (FT) MATERIAL DESCRIPTION Image: Constrained and the second sec	Project		Palm Coast Village		_ {	She	et	2	of
LEET. UP IT MATERIAL DESCRIPTION Image: Second		DEDTU		oL	Щ.	5	STANDAR	D PENET	RATION TEST
16 Very Loose to Firm Gray Fine SAND with Silt (SP-SM), Continued 17 17 18 18 18 19 3 20 4 21 6 22 10 23 10 24 6 25 Boring Terminated at 25 Feet 26 14 27 14 28 10 29 14 29 14 29 16 10 10	ELEV. (FT)	(FT)	MATERIAL DESCRIPTION	SYMB	SAMP NO.	E	BLOWS / 6	6-INCH	BLOW COUNT
Silt (SP-SM), Continued 17 18 19 20 21 22 22 23 24 24 25 Boring Terminated at 25 Feet 28 27 29 30 30 4 10 4 10 4 10 10 10 10 10 10 10 10 10 10		- 16 -	Very Loose to Firm Gray Fine SAND with	r fa anna F fa an fa		_			-
- 17 -			Silt (SP-SM), Continued						
- - - - - - - - - - - - - - 10 - - - - - - - - - - - 10 - </td <td></td> <td>- 17 -</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>-</td>		- 17 -				_			-
- -									
- 18 - - - - - - - - - - 10 - 20 - - - - - - - - 10 - 20 -				1.000000					
19 - - 3 - 10 20 - - 6 - - 6 - - 10 21 -		- 18 -				_			
- 19 - - - - 10 - - - - - - - - 10 -<				1 () () () 1 () ()			3		
20 -		— 19 —		1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		F	5		
20 6 21 6 22 7 23 7 24 7 24 7 25 Boring Terminated at 25 Feet 26 7 27 7 28 7 29 7 20 7 21 7 22 7 24 7 25 9 26 7 27 7 28 7 29 7 30 7 30 7		L _			7		4		10
20 -		- 20					6		
$\begin{bmatrix} -21 \\ -21 \\ -22 \\ -22 \\ -22 \\ -23 \\ -24 \\ -24 \\ -25 \\ -26 \\ -26 \\ -26 \\ -26 \\ -26 \\ -27 \\ -28 \\ -27 \\ -28 \\ -28 \\ -28 \\ -29 \\ -2$		_ 20 _							
$\begin{bmatrix} -21 \\ -22 \\ -22 \\ -23 \\ -23 \\ -24 \\ -24 \\ -25 \\ -26 \\ -26 \\ -26 \\ -27 \\ -28 \\ -28 \\ -28 \\ -28 \\ -28 \\ -28 \\ -28 \\ -29 \\ -2$									
- -		<u> </u>		699.19		-			-
- -									
- -		- 22							-
23 -				rrina. Filipini					
23 -				1.010773 61146					
- - - - 6 - 14 - - - - 6 - 14 - - - - - 6 - 14 - - - - - - - - 14 - <		- 23 -		n cabaaa Cocabaa		-			-
- 24 - - - - - - - - 14 - 25 Boring Terminated at 25 Feet -							6		
25 Boring Terminated at 25 Feet 8 6 14 26 - - - - - 27 - - - - - 28 - - - - - 30 - - - - -		- 24 -		1.01.011		F	0		-
- 25 Boring Terminated at 25 Feet -					8		6		14
Boring Terminated at 25 Feet		- 25		1.1.1.1.1.1			8		
		25	Boring Terminated at 25 Feet						
$ \begin{bmatrix} -27 \\ -28 \\ -28 \\ -30 \\ -$		- 26 -				-			-
		<u> </u>							-
		- 28 -							
		- 29				F			-
		30				L			
		<u> </u>							1

TEST BORING RECORD JOB NO. 22-1041

ENG	INEER	ING, INC.			В	ORING NO.	B16	
Geotech	hnical & Mat	S	heet 1	of2				
Project _		Palm Coast Vi	llage		B	oring Begun	03/23/2022	
Boring Lo	ocation	See Field Ex	oloration Plan		B	oring Completee	d <u>03/23/2022</u>	
Ground E	Casing So	<u>N/A</u> Datum <u>N/A</u> Ground	dwater Deptn1.0 feet		D E	niier	DK larod Pitts	
Length of			4 110105					
ELEV. (FT)	DEPTH (FT)	MATERIAL DES						
	0	Topsoil (6 i	nches)					
					I			
	_ 1 _	Very Loose to Loose Gr	ay Fine SAND (SP)	1		2	3	
			-			1	C C	
						2		
	- 2 -						_	
				1.131.14		2		
	_ 3 _	Loose to Firm Brown Fine S	SAND with Silt (SP-SM)	1.1.1.1.1	,▮∟	2	- 6	
						4	C C	
				1-1-1-1-1-1-1		4		
	- 4 -			6 69 9 9 9 6 69 9 10		5	_	
						0		
	_ 5 _			3	▖▋┝		17	
		Firm Light Brown Fine SA	ND with Silt and Trace			9		
		Clay (SP	-SM)			13		
	6 -			1.019019 01010		 10	_	
		Firm Light Brown and Brown	Mottled Fine SAND (SP)	<u>FFEEEEEE</u>		10		
	- 7		Mottled I life SAIND (SF)	4	╷┃┝		20	
						10		
						9		
						6		
		Firm Light Grav Brown	n Fine SAND (SP)			5		
	- 9 -			5	; -		- 11	
						6		
	10							
	- 11 -						_	
	- 12 -	very Loose Gray Silty	FINE SAND (SM)					
	- 13 -							
	┝ ┤					n		
	- 14						_	
				6		1	2	
						1		
REMARK	S:		BORING & SAMPLI	NG: ASTM	D158	6/CORE DRILLING:	ASTM D2113	

BLOW COUNT IS THE NUMBER OF BLOWS OF 140 LB. HAMMER Ground Water Table FALLING 30 IN. REQUIRED TO DRIVE 1.4 IN. I.D. SAMPLER 1 FT.

TEST BORING RECORD J

JOB NO. 22-1041

B16

BORING NO.

ENGINEERING, INC.

Geotechnical & Materials Engineering and Testing

Project _		Palm Coast Village		_ 5	Sheet	2	_ of	2
			Ъ'	Щ	STA	NDARD PEN	ETRA	ATION TEST
ELEV. (FT)	(FT)	MATERIAL DESCRIPTION	SYMB	SAMPI NO.	BLC	WS/6-INCH		BLOW COUNT
	— 16 — — 17 —	Very Loose Gray Silty Fine SAND (SM), Continued			_	-		
	 - 18	Looso to Firm Grov Find SAND with Silt (SP SM)			_	-	_	
	— 19 — - — 20 —			7	_	- 3 5		8
	 _ 21 _		1009070 6 19000 7 60900 6 69909 1009070 1009070 6 699090		_	-	_	
	- 22 		1.00000 00000 000000 1.000000 0.000000 0.000000 0.000000 0.000000		_	-	_	
	 24 —			8	_	7 -	_	13
	25 	Boring Terminated at 25 Feet	4-64 66 69 10 6 9 60 00 10 6 9 60 00 10 6 9 6 10 10		_	7 -	_	
	— 26 — -				_	-		
	 _ 28 _				_	-		
	29				_	-		
	- 30 - - 31 -				_	-		

LEGACY **TEST BORING RECORD** JOB NO. 22-1041 ENGINEERING, INC. BORING NO. B17 Geotechnical & Materials Engineering and Testing Sheet 1 of 2 Project Palm Coast Village Boring Begun 03/23/2022 See Field Exploration Plan Boring Completed 03/23/2022 **Boring Location Ground Elevation** N/A N/A 0 feet (Ground Surface) DK Datum **Groundwater Depth** Driller **Casing Size** Length of Casing Set 5 feet 4 inches Engineer Jared Pitts STANDARD PENETRATION TEST SAMPLE NO. SYMBOL DEPTH ELEV. MATERIAL DESCRIPTION BLOW (FT) (FT) BLOWS / 6-INCH COUNT 0 1 Topsoil (4 inches) Loose to Firm Gray Brown Fine SAND (SP) 2 1 7 1 5 5 2 5 7 2 3 16 9 12 4 7 9 5 3 20 Firm Gray Fine SAND with Clay (SP-SC) 11 10 6 8 Firm Gray Brown Fine SAND (SP) 9 7 4 20 11 10 8 Firm Light Gray Brown Fine SAND (SP) 5 8 9 5 14 6 10 11 12 Very Loose Dark Gray and Brown Silty Fine SAND with Some Organic Materials (SM) 13 Moisture Content = 47.3%

BORING & SAMPLING: ASTM D1586/CORE DRILLING: ASTM D2113

6

Ground Water Table BLOW COUNT IS THE NUMBER OF BLOWS OF 140 LB. HAMMER FALLING 30 IN. REQUIRED TO DRIVE 1.4 IN. I.D. SAMPLER 1 FT.

Organic Content = 7.6%

14

15

REMARKS:

2

TEST BORING RECORD Jo

JOB NO. 22-1041

B17

BORING NO.

ENGINEERING, INC.

Geotechnical & Materials Engineering and Testing

Project _		Palm Coast Village		_ 5	Sheet	2	of2
	DEDTU		oL	Щ.	STA	NDARD PENE	TRATION TEST
ELEV. (FT)	(FT)	MATERIAL DESCRIPTION	SOII SYMB	SAMP NO	BLO	WS / 6-INCH	BLOW COUNT
	— 16 —	Very Loose Dark Gray and Brown Silty Fine SAND			_		
		with Few Organic Materials (SM), Continued					
	- 17	Firm Gray Fine SAND (SP)			_	_	_
	- 18				_	_	-
						_	
	<u> </u>				L	5 _	_
	-			7		8	14
						6	
	20 —				-	_	-
	<u> </u>				_	_	_
	- 22				_	_	-
	— 23 —				_	_	_
	L _						
						5	
				8	Γ	6	13
						7	
	- 25 -	Paring Terminated at 25 East			-	_	-
		Borning Terminated at 25 Feet					
	26					_	
	20						
	- 27 -				_	-	-
	- 28 -				_	_	_
	29 —				–	_	1
	╞ –						
	— 30 —				-	_	_
	<u> </u>				<u> </u>		-

ENU	IINCER	Ind, Inc.					E	SORING NO. $_$		A3
Geoteci	hnical & Mai	terials Engineering a	and Testing				S	Sheet 1	(of 1
Project			Palm	Coast Village			E	Boring Begun	(02/14/2022
Boring Lo	ocation		See	Field Exploration Plan			E	Boring Comple	ted	02/14/2022
Ground E	levation	vation N/A Datum N/A Groundwater Depth 0.2 feet					_ c	Driller	[DK .
Length of	f Casing Se	Set N/A Casing Size N/A				E	Engineer	Jai	ed Pitts	
J	J		J	`					ENET	RATION TEST
ELEV. (FT)	DEPTH (FT)		MATER	RIAL DESCRIPTION		SYMBOI	SAMPLE NO.	BLOWS / 6-INC	СН	BLOW COUNT
	0		Tons	oil (4 inches)						
		<u>م</u>	Light Prov	n Eine SAND (SD)						
			сідпі Біом	IT FILLE SAIND (SF)						
							1	_		
							·			
	_ 2 _									
	2	Gray E	Brown Fine	SAND with Silt (SP	P-SM)	1.1.1.1.1.1.1				
		-			·	6991	<u>_</u>			
	<u> </u>						2 L	_		
		Boring Termi	inated at 3	Feet Due to Boreho	ole Collapse					
	- 4 -							_		
	- 5 -									
	_ 6 _							_		
	- 7 -							_		
	- 8 -							_		
	9							_		
	— 10 —							_		
	- 11 -							_		
	<u> </u>							_		
	- 13							_		
	<u> </u>							_	_	
	15 —							F		
REMARK	<u> </u>				ORING & SAMPLIN	G. ACT	M D15			STM D2112
				E	SORING & SAWPLIN	13. A311	1010		10. A	UTWI DZI IS

EINGIINEERIING, IINC. Geotechnical & Materials Engineering and Testing									NO	A4
Geotechnic	cal & Mate	erials Engineering a	nd Testing					Sheet	1	of 1
Project			Palm	Coast Village	~.			Boring Be	egun (02/14/2022
Boring Loca	tion		See	Field Exploration F	Plan			Boring Co	ompleted	02/14/2022
Ground Elev	vation	N/A Datum	<u>N/A</u>	Groundwater De	epth 0.3 fe	eet	_	Driller	[
Length of Ca	asing Set	t <u>N/A</u>	Casing Size		N/A	•		Engineer	Jai	red Pitts
	ЛЕРТН								ARD PENET	RATION TEST
(FT)	(FT)		SYME	SAMF	BLOWS	/ 6-INCH	BLOW COUNT			
	0		Tops	oil (8 inches)						
	• 1 —	Light B	rown Fine Roc	SAND with S ots (SP-SM)	ilt and Trace	6 19 30 19 10 19 30 19 10 19 30 19 10 19 30 19 10 19 30 19	1			
	2					1003000 0003000 0003000 10030030]		
-	_	Light E	srown Fine	SAND with a	511t (SP-SM)	1.609.00 1.609.00 669.00	2			
	3 —					1,777777 1,15975 1,43575		•		
	- 4	Boring Te	erminated a	at 3.5 Feet D Collapse	ue to Borehole			-		
	- 5							-		
	6 —							_		
	- 7 —							_		
	- 8							_		
	- 9							_		
	- 10							_		
	- 11							_		
	- 12									
	- 13									
	· 14 — _							-		
	15 —							_		
REMARKS:					BORING & SAM	MPLING: AST	M D1	586/CORE D	RILLING: A	STM D2113

ENGINEER	ING, INC.			E	BORING NO.	A5				
Geotechnical & Mai	terials Engineering and Testing			ę	Sheet 1	of1				
Project	Palm Coast Villag	e		_ E	Boring Begun	02/14/2022				
Boring Location	See Field Explore	ation Plan	<u> </u>	_ E	Boring Completed	1 <u>02/14/2022</u>				
Ground Elevation	_ ¦	Driller	DK Ditto							
Length of Casing So		t	ingineer J	ared Pitts						
ELEV. DEPTH (FT) (FT)	MATERIAL DESCRIP									
0	T									
	l opsoil (6 inc	hes)								
	Gray Brown Fine SAND w	vith Silt (SP-SM)	លោក ហេដុ ស្រុក ហេដុ							
			រ លោក លោក ភូមិ សំណាម	1						
			n teration Tacharata							
2 —	Light Gray Brown Find					_				
	Light Gray Blown Fille	SAND (SP)								
				2						
3										
	Boring Terminated at 3.5 Fe	et Due to Borehole								
- 4 -	Collapse					_				
- F										
6 —				_						
8						_				
9 —						_				
10						-				
11						_				
- 13						_				
					L _					
15					┝ -	-				
REMARKS:		BORING & SAMP	LING: AST	M D15	 86/CORE DRILLING:	ASTM D2113				

ENGINEER	ING, INC.			В		A10		
Geotechnical & Mat	S	heet 1	of 1					
Project	Palm (Coast Village		_ В	oring Begun	02/14/2022		
Boring Location	See F	ield Exploration Plan		_ B	oring Completed	02/14/2022		
Ground Elevation	Ground Elevation N/A Datum N/A Groundwater Depth 0.3 feet							
Length of Casing Se	et Casing Size	_ E	ngineer Ja	red Pitts				
			اي ر	ب لي	STANDARD PENET	RATION TEST		
(FT) (FT)	MATER	SAMF	BLOWS / 6-INCH	BLOW COUNT				
0	Topse	oil (6 inches) 🛛 💂	, , , , , , , , , , , , , , , , , , ,					
	Dark Grav Brown Fi	ne SAND with Silt (SP-SM)						
	Light Brown	n Fine SAND (SP)						
				2				
	Boring Terminated a	at 3.5 Feet Due to Borehole						
	C	Joliapse						
- 5 -								
- 6								
, ,								
— 9 —								
- 10 -								
- 11								
- 12								
13						1		
14								
- 15				│├				
L REMARKS:		BORING & SAMPLI	I NG: ASTN	1 D158	86/CORE DRILLING: A	STM D2113		

Geotechnical & Materials Engineering and Testing

LEGACY ENGINEERING, INC 6415 GREENLAND ROAD JACKSONVILLE, FL 32258

904-721-1100 OFFICE 904-722-1100 FAX

SUMMARY OF LABORATORY INDEX TEST RESULTS

Palm Coast Village Palm Coast, Florida Legacy Engineering Project No. 22-1041.1

Boring S No.	Sample No.	Dep Range	oth , Feet		Perce	ent Passi	ng U.S.	g U.S. Standard Sieve ¹				Plastic Limit ²	Plasticity Index	Moisture Content ³	Organic Content ⁴	Unified Soil Classification
1.0.	1.0.	From	То	#4	#10	#20	#40	#60	#100	#200		Linit	maen	content	content	Chubbilioution
B14	1	0.4	2											40.1%	4.7%	SP-SM
B15	1	0.6	2											40.9%	9.0%	-
B17	6	13.5	15											47.3%	7.6%	SM

Notes: 1. Grain size distribution testing performed in accordance with ASTM D422. Fines content testing performed in accordance with ASTM D1140

2. Performed in accordance with ASTM D4318

3. Performed in accordance with ASTM D2216

4. Performed in accordance with ASTM D2974

Consulting Engineering Services The Ellis Family Has Been Serving the Engineering and Construction Industries Since 1939

Palm Coast Village

APPENDIX B

KEY TO SOIL CLASSIFICATION FIELD AND LABORATORY TEST PROCEDURES

KEY TO SOIL CLASSIFICATION

CORRELATION OF PENETRATION WITH RELATIVE DENSITY & CONSISTENCY

SANDS AND GRAVEL									
BLOW COUNT	RELATIVE DENSITY								
0-4	VERY LOOSE								
5-10	LOOSE								
11-20	FIRM								
21-30	VERY FIRM								
31-50	DENSE								
OVER 50	VERY DENSE								

SILTS AND CLAYS									
BLOW COUNT	CONSISTENCY								
0-2	VERY SOFT								
3-4	SOFT								
5-8	FIRM								
9-15	STIFF								
16-30	VERY STIFF								
31-50	HARD								
OVER 50	VERY HARD								

PARTICLE SIZE IDENTIFICATION (UNIFIED CLASSIFICATION SYSTEM)

CATEGORY	DIMENSIONS	
Boulders	Diameter exceeds 12 inches	
Cobbles	3 to 12 inches	
Gravel	Coarse – 0.75 to 3 inches in diameter Fine – 4.76 mm to 0.75 inch diameter	
Sand	Coarse – 2.0 mm to 4.76 mm diameter Medium – 0.42 mm to 2.0 mm diameter Fine – 0.074 mm to 0.42 mm diameter	
Silt and Clay	Less than 0.074 mm (invisible to the naked eye)	

MODIFIERS

These modifiers provide our estimate of the amount of minor constituent (sand, silt, or clay size particles) in the soil sample

PERCENTAGE OF MINOR CONSTITUENT	MODIFIERS
0% to 5%	No Modifier
5 % to 12 %	With Silt, With Clay
12% to 30%	Silty, Clayey, Sandy
30% to 50%	Very Silty, Very Clayey, Very Sandy

APPROXIMATE CONTENT OF OTHER COMPONENTS (SHELL, GRAVEL, ETC.)	MODIFIERS	APPROXIMATE CONTENT OF ORGANIC COMPONENTS
0% to 5%	TRACE	1 to 2%
5% to 12%	FEW	2% to 4%
12% to 30%	SOME	4% to 8%
30% to 50%	MANY	>8%

Consulting Engineering Services The Ellis Family Has Been Serving the Engineering and Construction Industries Since 1939

FIELD AND LABORATORY TEST PROCEDURES

Penetration Borings

The penetration borings were made in general accordance with ASTM D 1586-67, "Penetration Test and Split-Barrel Sampling of Soils". Each boring was advanced to the water table by augering and, after encountering the groundwater table, further advanced with a rotary drilling technique that uses a circulating bentonite fluid for borehole flushing and stability. At two-foot intervals within the upper 10 feet and at five-foot intervals thereafter, the drilling tools were removed from the borehole and a split-barrel sampler inserted to the borehole bottom. The sampler was then driven 18 inches into the material using a 140-pound SPT hammer falling, on the average, 30 inches per hammer blow. The number of hammer blows for the final 12 inches of penetration is termed the "penetration resistance, blow count, or N-value". This value is an index to several in-place geotechnical properties of the material tested, such as relative density and Young's Modulus.

After driving the sampler 18 inches (or less, if in hard rock or rock-like material) at each test interval, the sampler was retrieved from the borehole and a representative sample of the material within the split-barrel was placed in a watertight container and sealed. After completing the drilling operations, the samples for each boring were transported to our laboratory where our Geotechnical Engineer examined them in order to verify the driller's field classifications. The samples will be kept in our laboratory for a period of two months after submittal of formal written report, unless otherwise directed by the Client.

Auger Borings

The auger borings were performed using a continuous flight auger attached to a rotary drill rig or manually using a post-hole auger; and thus in general accordance with ASTM D 1452-80, "Soil Investigation and Sampling by Auger Borings". Representative samples of the soils brought to the ground surface by the augering process were placed in watertight containers and sealed. After completing the drilling operations, the samples for each boring were transported to the laboratory where the Geotechnical Engineer examined them in order to verify the driller's field classifications. The samples will be kept in our laboratory for a period of two months after submittal of formal written report, unless otherwise directed by the Client.

Soil Classification

Soil samples obtained from the performance of the borings were transported to our laboratory for observation and review. An engineer, registered in the State of Florida and familiar with local geological conditions, conducted the review and classified the soils in accordance with ASTM 2488. The results of the soil classification are presented on the boring records.

Moisture Content

The moisture content of the sample tested was determined in general accordance with ASTM D 2216. The moisture content is the actual moisture content of the sample as sampled in the field during the performance of the soil boring.

Organics Content

The organics content of the sample tested was determined in general accordance with ASTM D 2974. The organics content is the percent of loss of material of an oven-dried sample of material after the sample has been heated in a muffle furnace to 440 °C.